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Shrinkfit interference
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Contact surface nodal displacement of body {
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ABSTRACT

Contact stresses, contact forces, relative contact
surface displacements, and the dissipative effects of
friction are computed, by the finite element method, for
various two~ and three-dimensional contact problems.

The finite element technique is verified by analysis of
several two-dimensional frictionless contact problems;

the Hertz contact of two cylinders, a rigid sleeve/elastic
shaft shrinkfit, and an elastic sleeve/elastic shaft shrink-
fit. In these cases the finite element calculations compare
favorably to existing solutions. The contact analysis
capability is extended to frictional contacts by con-
sidering plane stress and axisymmetric contact problems
with friction and slip, for which reasonable results are
produced. The capability is further extended to complex
three~dimensional contacts by an effort to determine the
contact forces and frictional dissipation taking place

in the cyclic bending of a shrinkfit assembly. This

work demonstrates that advanced nonlinear finite element
methods can be used to solve a variety of mechanical
engineering problems involving unlubricated contact

surfaces and the effects of friction.

ADMINISTRATIVE INFORMATION
The work described in this report was performed at the David W. Taylor Naval
Ship Research and Development Center (DTNSRDC) under the In-house Research/In-house

Engineering Development (IR/IED) program, Program Element 61152N, Task Area
ZR0230301, and Work Unit 1720-110.

METRIC CONVERSION
All numerical quantities in this report are expressed in U.S. customary units.
Use the following factors to convert to metric units:
1 in. = 2.54 cm
11b = 0.454 kg
1 pst = 0.690 N/cm?
1 1b/in 1.751 N/cem
1 1n-1b 0.113 J
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INTRODUCTION

In many cases, the reliability of machine elements in power transmission and
power generation systems depends on the integrity of contact gurfaces between system
components. Although the wear resistance of component surfaces is a vital consid-
eration, the performance of contact surfaces in a structural mechanical sense is
also very important. All machinery components deform under load, and such deforma-
tions influence both the contact pressures and the frictional forces transmitted
between contact surfaces. These forces are also influenced by the materials and
lubricants involved.

Many examples can be cited in which contact stresses and the frictional
behavior of contact surfaces affect the various possible failure modes of naval
ship and submarine machine components. Often, the contact surface is lubricated
(e.g. the concentrated contacts arising in gear and bearing assemblies). Surface
fatigue fallure mechanisms such as pitting and fretting, which occur in reduction
gear and propulsion shaft bearings, respectively, are influenced by contact pres-
sure and frictional stress. Contact pressure and friction resulting from component
deformation influence the performance of mechanical fastenings (bolts, joints,
rivets, threaded fasteners) and seal systems (0O-rings and gaskets). The influence
of contact stresses on failures is an important consideration in high-speed machin-
ery components, such as turbine blade/rotor fastenings. Finally, contact surface
gapping is sometimes a potentifal problem (e.g. the behavior of preloaded bolts and
blade palm/hub surfaces in controllable pitch propeller systems).

When dealing with contact surface integrity problems, the navy engineering
community has traditionally devoted much attention to the materials aspects.
Solutions to wear, galling and surface fatigue problems have typically been sought
through extensive and expensive experimentation and materials evaluations. The on-
going concern with submarine shaft seals provides a prime example. These machinery
component problems have been addressed almost exclusively from a materials stand-
point, with relatively little attention to the structural mechanical performance.
Clearly, a seal cannot perform as intended unless the component deformations and
the geometry of seal and surrounding components assure an optimum contact surface
load transmission pattern. The experimental line of attack was the only available

recourse when analytical methods for contact and friction analysis were limited,

impractical, or impossible. The rapid development of finite element methods to
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analyze structural mechanical systems of complex geometry and treat previously
intractable nonlinear phenomena has changed this situation completely.

As naval machinery systems have become more complex, the need for a contact/
friction structural analysis capability has become more acute. Although they retain
their importance, experiments and materials evaluations that account for the influ-
ence of all variables are difficult and expensive to conduct. An analytical tool
is needed which is capable of mathematically evaluating the performance of contact
surfaces in mechanical component designs. Such an analytical tool may also be of

assistance in fallure assessment.

OBJECTIVE AND SCOPE

The purpose of this study is twofold:

(1) To verify evaluate, and refine newly developed nonlinear finite
element techniques for contact stress and friction analysis.

(2) To apply these new techniques to a complex practical engineering
problem, fretting corrosion fatigue, in an attempt to correlate
calculated contact and friction behavior to experimental evidence
of fretting.

The scope of this study is limited in several ways:

(1) The theory is limited to dry, unlubricated contacts. The important
problem area of elastohydrodynamic lubrication is not considered.

(2) Of principal concern are interference contacts over a large surface area;
concentrated contacts are not considered.

(3) Mixed contact/gapping is not considered, although the theory is capable
of straightforward treatment of such problems.

(4) This study is limited to static and quasi-static cyclic loadings, although
theories exist which can handle dynamic impact problems.

(5) The theory describes the effects of contact behavior only in a macroscopic
structural mechanical sense. No attempt is made to address the tribolog-
ical issues of contact and friction behavior (asperity interaction, con-
tact surface irregularity, local cold welding and cracking, etc.)

These limitations can be placed in proper perspective by realizing that this

study 18 only a first attempt to apply state-of-the-art structural mechanics analy-

sis methods to a wide class of complex, practical contact problems.
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BACKGROUND
CLASSICAL MATHEMATICAL APPROACHES TO
CONTACT PROBLEMS OF SOLID MECHANICS
The mathematical techniques of elasticity theory have long been used to solve
the static contact problems of solid mechanics. The standard work of Timoshenko
(reference 1,* pp. 409-420) contains a treatment of the so-called Hertzian contact
of spheres and cylinders, the simplest type of contact problem and the first one
reduced by rational analysis. The Hertz problems are also discussed by Lubkin
(reference 2, Chapter 42) and by Love (reference 3, pp. 192-200). Many Russian
mathematicians have specialized in contact research, and three treatises on such
problems have been produced.l‘-6 The English-language literature also contains a
vast number of papers on a wide variety of contact problems; a few recent samples
are referenced.’ 12
The elasticity approach is important for fundamental understanding and has
provided many useful solutions to engineering problems. From the engineer's stand-
point, however, the purely mathematical approach presents three difficulties:
(1) Complexity
The commonly used specialized techniques (integral transforms, potential
functions) require a in-depth understanding of the theory of partial differen-
tial equations and integral equations. As a result, solutions tend to be
involved mathematical expressions that are not always presentable in closed
form.
(2) Geometrical limitations
In order for elasticity solutions to be tractable, the problem must be
posed in simple coordinate systems (Cartesian, radial). Many practical
contact problems are characterized by complex geometry that does not fit a
standard coordinate system. Also, because gpecialized elasticity solutions
contalin assumptions on boundary conditions and symmetry planes, their valid-
ity is restricted.
(3) Limited threatment of nonlinear effects in mathematical solutions
When friction is considered, for example, (which is rare) the ideal assump-
tion of full adherence is usually invoked, while the real situation may involve
mixed slip and adherence. In contact and gapping situations, the extent of

gapping must be assumed "a priori,” an assumption which may be difficult to

*A complete listing of references 1is given on page 117.
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Justify. The nonlinearity of dynamic contact-impact kinetics is also very

difficult to treat analytically.

This brief critique of classical methods demonstrates the desirabilitj of an
approximate numerical approach to analysis of contact effects in complex naval

engineering problems.

FINITE ELEMENT APPROACHES IN CONTACT, FRICTION,
AND GAPPING PROBLEMS IN SOLID MECHANICS

The finite element method has recently been extended to handle nonlinear con-
tact problems in solid mechanics. For many years, the thrust of research has been
to devise specialized techniques for specific classes of contact problems. Earliest
efforts addressed frictionless contact arising from a prescribed indentation without
gapping.13 Techniques were then developed to handle frictionless contact/gap prob~
lems (reference 14, and work by Gifford*); frictionless interference fits without

- *
15-17 and combinations of contact, gapping, and interference.* The first

gapping; ‘
18-20 !

finite element treatment for contact and gapping with friction considered two~
dimensional contacts modelled by low-order finite elements. This capability has been
extended to ihree-dimensional problemS.21 The general approach of this work is to
formulate the contact problem in terms of conventional incremental equilibrium equa- |
tions subject to nonlinear constraint conditions on contact surface displacements
and/or forces. This approach can be conveniently generalized in terms of the clas-
sicial Lagrange multiplier method, in which nonlinear contact constraint equations
and conventional incremental equilibrium equations are solved simultaneously in an

iterative manner. The Lagrange multiplier approach22 is considered in this study.

Another line of attack is to model contact interfaces as a fictitious layer ).
of material possessing empirical constitutive properties that approximately describe |
observed contact and friction behavior. Contact and gap phenomena can be modelled
with "bilinear springs™ that possess very high stiffness when countact is detected
and are assigned vanishingly small stiffness when gapping occurs.23 Analogous

“friction springs” can similiarly be activated and deactivated according to whether !

*
. Unpublished work by L.N. Gifford of the Structures Department of DTNSRDC.

*
Unpublished work by R. A. Lindeman of the U.S. Naval Weapons Laboratory,
Dahlgren, Virginia.




adherence or slip is occurring.24’25

Contact surfaces have also been modelled as
a continuous layer of material with bilinear stiffness.26 The bilinear spring
approach has been used in general-purpose nonlinear finite element programs.27'28
These works share a common feature; a contact surface stiffness parameter is
assigned which supplements the conventional stiffnesss coefficients of the incre-
mental equilibrium equations. The "stiffness” (also called "penalty") approach
has advantages in some situations and 18 also considered in this study.

More advanced lines of finite element contact research have also been pursued.
An advanced stiffness-like method which models complex frictional behavior by "bond
elements” has been proposed.29 Complex adherence and slip rules closely resembling
classical plasticity theories have been formulated for two~ and three~dimensional

problems.30’31

These works model frictional behavior by rational constitutive rela-
tions. The constitutive equation approach holds promise for modeling finer details
of friction behavior for a wide variety of materials; however, it is not convenient-
ly applicable to the problems considered here. Finally, a method has been devised

32,33

for finite element solution of dynamic contact-impact problems, which are

vitally important but of little relevance to this study.

These recent works have made possible the approximate numerical analysis of
a wide variety of contact problems. The limitations of classical mathematical
methods, geometry-dependence, and need for special boundary conditions are elimi-
nated quite naturally by finite element techniques. Highly nonlinear contact
phenomena, such as mixed contact and gapping, mixed adherence and slip, and contact/
impact, are accomodated quite generally by finite element codes. Finally, most of
those engineers who do not have the extensive mathematical background needed to
understand elasticity methods can work with even nonlinear finite element methods.

The finite element techniques which have been applied to problems considered

in this study are more fully described in the following section.
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APPROACH

LAGRANGE MULTIPLIER METHOD FOR FINITE
ELEMENT MODELLING OF CONTACT, GAP,
AND FRICTION PROBLEMS

The elastic stiffness matrix and the incremental load vector in the structural
incremental equilibrium equations are formulated in this approach by the generalized
principle of minimum potential energy (or alternatively, the principle of virtual
work). The incremental equilibrium equations are supplemented, however, by con-
straint terms of the Lagrange multiplier type which impose the contact or gap
conditions existing at the current load step. Finite element meshes representing
the solid bodies in the problem are modelled in the usual way by arrays of ele-
ments interconnected at nodal points. The nodal arrangement on surfaces that
initially interfere (as in a shrinkfit), initially contact, and initially contact
but gap apart as loading proceeds, must be such that opposing nodes are paired;
that 1is, their initial coordinates are either coincident (interference and contact),
or spatially close together and in line with one another (initial gapping, see
Figure 1). It is assumed that displacements in the problem are small, so that
opposing nodes which are initially close together remain so in the course of load-
ing. The analyst specifies “"contact elements” or "contact kinematic constraints”
between chosen pairs of candidate contact nodes. The relative normal displacements
are monitored at these node pairs as the structure is loaded. The Lagrange multi-
pliers, which are calculated unknowns as are the nodal displacements, turn out to
be the normal contact forces transmitted between the node pairs. The initial
interference case, which exists 1f all node pairs are overlapping, is a linear
problem which can be solved in one step since all Lagrange multipliers are active.
In the general case, however, the contact conditions change in the course of
loading (i.e. gaps close or open) and the Lagrange multipliers are made active
(gap closed, contact force transmitted) or set to zero (gap open, no contact force),
depending on the current normal relative displacements. This constitutes the non-
linearity of the problem. A complete mathematical description of the Lagrange %
multiplier theory and the associated finite element equations are given, in vec-
torial form, by Hibbitt and Rubin.22 Specialized examples of finite element equa-

tion systems have been developed from the general forms in reference 22. These
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unpublished developments* illustrate the adherence/slip constraints and the solution
process for various contact conditions of practical interest.

The Lagrange multiplier approach is also used to model the frictional behavior
of contact surfaces.22 Classical Coulomb friction theory is applied; this assumes
that an adherence condition exists at a contact node pair when the local frictional
force (force tangential to the contact surface) is below the local static frictional
force 1imit. Slip (relative tangential displacement) occurs when the frictional
force reaches this limit. The friction 1limit is defined by an empirical relation

of the normal contact force Fy, 1n which U is the experimentally measured static

friction coefficient:

Fr < W+ Fy (adherence) ¢y
Fp =1+ Fy (slip) (2)

In the complete adherence condition, all relative tangential displacements on
the contact surface are constrained to zero, and the frictional forces are unknown.
In the mixed adherence and slip condition, the frictional force is constrained to
FT = W Fy at slipping node pairs, and the slip Is the unknown quantity associated
with those node pairs. The displacement response to external loading 1is nonlinear
in a load step; this causes the Coulomb slip limit to be reached at some node pairs
while the others remain adhered. The nonlinear problem is solved by monitoring
the relation of normal force to frictional force, the appropriate constraints being
imposed according to whether equations (1) or (2) hold. After a trial solution
that assumes full adherence everywhere, final equilibrium at the current load is
found through an iterative process that unlocks adhered nodes not satisfying the
Coulomb limit.

The Lagrange multiplier approach for both normal contact/gapping and friction
behavior has been incorporated as the "contact elements” of the MARC general purpose
nonlinear finite element code.34 Several finite element contact approm:heslg-22
are very similar to the MARC method but do not contain a frictional slip degree of
freedom. They can be considered to be special cases of the MARC approach. As it

turns out, the Lagrange multiplier method works quite well for the normal contact

*
Authored by D. E. Lesar of the Structures Department of DTNSRDC.




force/gap part of the contact problem but does not always work well for friction.
Hibbitt, the developer of this method, has indicated that the Lagrange multiplier
approach for friction and slip suffers mathematical instabilities and leads to con-
vergence difficulties in cases where adherence to slip transitions occur.3? The
method appears to predict adherence/slip behavior reasonably well in the 2-D analy-
sis,19 as long as the extent of slip is small. Attempts to apply MARC to the 3-D
friction problems considered here resulted in severe convergence problems. This
poor performance led to the consideration of a new friction theory which borrows
from the so—called "penalty method” used in finite element solutions of contact

problems. This improved friction theory is discussed in the next section.

STIFFNESS METHOD FOR FINITE ELEMENT MODELLING
OF FRICTIONAL BEHAVIOR IN CONTACT/GAP
AND FRICTION PROBLEMS

The penalty (or stiffness) method has been used in the past to model the
contact/gap aspects of contact problems. Candidate contact node pairs are linked
by what amount to simple truss elements that possess a "bilinear stiffness.” These
elements are assigned a very high stiffness when the current nodal displacements
indicate a clcsed gap and a very low stiffness when gapping occurs. This method,
used in ANSYS?7 and a previous version of MARC,36 tends to predict physically
invalid contact surface overlap when the "stiffnesses” are not optimally tuned
to the particular problem at hand. This poor performance led to development of
the Lagrange multiplier approach discussed earlier.

Some penalty method concepts have been resurrected in development of a new
friction-constraint element that circumvents possible convergence problems often
encountered in the Lagrange multiplier friction approach. This feature, contained

in the ABAQUS general-purpose nonlinear finite element program37

, retains Lagrange
multiplier contact/gap modelling but makes use of a completely new friction approach
described briefly in the following paragraphs.

The ABAQUS theory assumes that the frictional shear force magnitude FT is
linearly proportional to the tangential contact surface displacement by a "fric-
tional stiffness” or "stiffness in stick” parameter Kf as long as the frictional
shear force is less that the static frictional 1limit. Because of Kf, the contacting
solids behave as if connected by elastic springs that are capable or transmitting

frictional force. These "springs” represent, in a gross way, the resistance of the




contact surface to shear force and can be interpreted as the integrated effect

of the microscoplc asperity interaction occurring in reality. This approach, which
allows relative tangential dispacements on the contact surface, is more realistic
than the Lagrange multiplier method, which assumes that all such displacements

are zero in the adherence regime. A danger exists, however; Kf must be carefully
chosen so as to produce neither unrealistic results nor numerical instability prob-
lems. This matter is discussed in the analysis section.

The s8lip condition is defined in ABAQUS by a frictional shear force limit similar
to equation 2. Instead of calculating Lagrange multipliers associated with slip,
ABAQUS directly imposes the frictional slip constraint on the frictional forces by
a so-called "radial return” algorithm.38

ABAQUS regards an incremental solution as “converged"” when all nonequilibrated
(residual) nodal forces resulting from the approximate nature of the pilecewise linear
solution to the nonlinear problem are within some selected tolerance. This conver—
gence criterion is quite stringent and is particularly amenable to reliable solution
of contact and friction problems where the nonlinearities are related to forces.

Although finite element equations for the ABAQUS contact and friction approach
are completely developed in vectorial form,38 some simple specific examples written
in matrix form provide additional insight. Lesar of the DTNSRDC Structures Depart-
ment has prepared such developﬁents for simple examples that parallel two cases

described for Lagrange multiplier friction in unpublished notes mentioned previously.

CONTACT CONSTRAINT/CONTINUUM ELEMENT COMPATIBILITY

Both the Lagrange multiplier contact “"elements” of MARC and the hybrid Lagrange
multiplier-penalty method contact "elements” of ABAQUS are kinematic constraints
imposed at specified contact surface node pairs. Both are inherently compatible
with all displacement-based continuum solid finite elements of low interpolation
order. Such pointwise constraints are, however, incompatible with second-order
solids. Additional constraints are needed to enforce compatibility.

The compatibility difficulty can be clarified by considering the simple solid
element/contact element combinations shown in Figures 2a and 2b. 1In a finite ele-
ment assembly, distributed pressure loads are transmitted from one solid element to
another via equivalent nodal forces, which are calculated according to the element's

displacement interpolation functions. Low-order elements (4-node axisymmetric,
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8-node 3-D solid) will convert a uniform pressure load imposed on one face to a set
of equal compressive nodal forces on the opposite face. In Figure 2a, the contact
elements transfer these compressive forces to the rigid foundation. Second-order
elements (8-node axisymmetric, 20-node 3-D solids) convert this same uniform pres-
sure load to a set of both compressive and tensile nodal forces on the opposite
face (Figure 2b, see also reference 39, p. 223). As a result, the contact elements
at outer corners are forced to carry tensile load, an obviously unreasonable result
that leads to false predictions of gapping at these corner nodes. Similar diffi-
culties arise with tangential displacement degrees of freedom, resulting in invalid
frictional force and slip predictions. The advantages offered by higher—order solid
elements in modelling complex geometries are lost unless this compatibility problem
is remedied.

The simplest cure is to convert the quadratic displacement interpolation func-
tions for contact surface variables to linear functions. The equivalent nodal
forces generated by these linear functions will always have the same algebraic sign.
Linearization is accomplished by condensing all contact surface midside nodes out of

the equilibrium equation system, i.e., by imposing constraints of the form shown in

Figure 3:
b _ a _ pc
Ui = 1/2 (U, U (34)
- a _ ¢
Uy = 1/2 (U - U (3B)

for axi ymmetric elements and

u® = 172 8 - o (44)
b . - yc

U% 1/2 (ug - Ug) (4B)
Uy = 1/2 (Ul - U)) (4c)

for three dimensional solids.
The MARC and ABAQUS programs contaln features allowing easy input of such

constraints. However, the local linearization remedy possesses two undesirable

features. First, part of the advantage of high-order elements is lost. The
removal of midside nodes reduces the number of contact node points. Loss of con-

tact surface variables degrades the attainable accuracy. Second, linearization is
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strictly valid only when the contact surface is initially composed of straight
lines. 1In cases of curved geometry, the displacement linearization destroys the
smoothness of predicted deflection distributions {Figure 4). This error worsens
with greater element arc length and greater contact surface curvature.

The linearization constraint was the only compatibility remedy available when
the analyses reported herein were carried out. Compatibility difficulties have been
solved, however, through development of a new concept in contact and friction ele-
ments for the ABAQUS program. The basis for these new elements is a reformulation
of contact and friction constraints into a continuously interpolated form, in much
the same manner in which solid element properties are approximated. Fami'ies of
first- and second-order "interface elements” for two- and three~dimensional analy-
sis have been devised which interpolate contact and frictional forces with chosen
functions that are inherently compatible with first—- or second-order two- and three-
dimensional solids. The new ABAQUS approach,38’40 requires use of solid elements
with variable numbers of nodes. The extra data preparation price for these special

elements is well worth the much improved accuracy and generality which results.

ANALYSIS

VERIFICATION OF LAGRANGE MULTIPLIER METHOD
FOR STATIC FRICTIONLESS CONTACT

The normal contact force, gapping, and friction capability of the Lagrange
multiplier method has been partially verified in previous work.22 The MARC program
was used to analyze the Hertzian contact of two infinitely long cylinders of equal
radius. The predicted contact pressure and internal stress distributions agreed
reasonably well with the classical solution (reference 1, pp. 414-420). An inter-
ference fit contact of two cylinders with a friction coefficient of .30 was also
analyzed. Frictional slip at all nodes resulted from imposition of a sufficient
horizontal rigid body displacement on one cylinder.22

An elasticity solution of a similar fully slipped contact probleml‘1 results in
an internal stress distribution that is nonsymmetric with respect to the center
plane of the contact zone. MARC predicted stress contours which were very similar
to the elasticity solution.22

Additional comparisons to elasticity solutions were thought necessary, mainly

to clear up solid element/contact constraint compatibility issues but also to gain
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a feel for the behavior of contact constraints In progressively more complex
idealizations of mechanical systems. One such system of interest to the Navy's
ship power transmission community is the shrinkfit of a finite length sleeve onto
a long shaft. The principal focus of this study is on shaft and sleeve contact
problems, the first step being evaluation of MARC solutions for stresses, contact
forces, and displacements in two axisymmetric shrinkfit problems which have been

treated by elasticity methods.

Axisymmetric Rigid Sleeve and Elastic Shaft Shrinkfit

Case 1. A rigid sleeve of finite length shrunk onto a long, hollow, elastic shaft

is analyzed. The contact is frictionless and the shrinkfit is a uniform indentation
over the entire contact zone. This elasticity solution®? is more complete, in
terms of calculated results, than many shrinkfit studies. The physical situation
and important dimensions of the problem are shown in Figure 5. A schematic of
the finite element representation appears in Figure 6. Second-order (8-node) axi-
symmetric solids were used with linearization of contact surface displacements.
The shrinkfit interference is specified as a negative initial gap. A geometric
symmetry plane through the center of the contact zone is used to advantage. The
boundary conditions of the elasticity solution can only be approximated. The in-
finitely long shaft cannot be modelled without special "exponential decay” elements
(reference 39, pp. 660-664) so a finite shaft half-length eight times the contact
zone half-length was chosen. The end of the shaft is assumed to be free to expand;
as will be seen, this was an inappropriate assumption. A rotation-free boundary '
cannot be directly specified at the symmetry plane since rotation degrees of freedom :
are not available for continuum elements. The standard “"roller” boundary condition
was used and this effectively eliminated almost all rotation. The finite element
mesh is pictured in Figure 7; the finer discretization at the edge of the contact
zone (an area of steep stress gradients) is evident.

It should be apparent that this problem could be solved without aid of contact
elements - one may well have simply input the shrinkfit as a displacement load.
This case served to resolve some side issues relevant to contact modelling. One
main thrust of this effort was to see if MARC could produce reasonable stress pre-
dictions In a fairly simple shaft contact problem. A second objective was to eval-

uate the possibility of embedding layers of linear (4-node axisymmetric) elements
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! within the 8-node element mesh in the contact region. This seemed to be a viable . i
way of achieving contact constraint/solid element compatibility. A third objective
was to prove that contact surface linearizations are really needed in a practical
problem.

The third issue was settled quite easily by an analysis without linearization,
which produced a scalloped indentation pattern instead of the required straight
line; an obvious consequence of the algebraic sign problem with equivalent nodal
forces. A second analysis used a pure 8-node element mesh and a third analysis con-

tained 4 layers of 4-node elements as shown in Figure 8. Element mixing turned out

ad

to be a poor option because linear elements cannot capture steep stress gradients; ,é
a typical result being the badly discontinuous integration point stresses shown in ‘
figure 9. The mixed mesh solution also resulted in higher computer charges. The
element mixing option seemed to be a poor performer and was discarded.

The correlation of MARC results to the findings of Hill et a1.42 1s judged to
be fair despite two difficulties. First, Hill's numerical results are for an in- q

compressible material with a Poisson's ratio of 1/2. This number can be used

validly in finite element calculation only if special incompressible elements are
used. Conventional elastic elements with U = .49 were used here. Second, the effect
of infinite length may have been better represented with a fixed boundary at the

end of the shaft; a boundary free of restraint was used instead. This choice may
have produced some disagreement in radial (Figures 10a, 10b) and axial displacements
(Figure 11). The predicted trends are, however, correct.

Computed variation of the four stress components with shaft length is compared,
for several depths below the contact surface, to the Hill et al. solution in Fig-
ures 12-15. The stress curves are "by eye” interpretations of integration point
values; no attempt was made to extrapolate and/or smooth them mathematically. The
correlation appears fairly good, despite the Poisson's ratio approximation. Pre-
liminary analyses with meshes coarser than the one pictured in Figure 8 showed

severe overshoot and oscillation in radial, axial, and hoop stress beyong the edge

of the rigid sleeve. This effect was minimized by the finer mesh used to obtain

results shown in Figures 10-15.
It must be emphasized that the elasticity solution predicts singular radial

and hoop stress at the edge of the contact zone, a typical feature of contact

problems containing corner discontinuities. Finite element models require use of

14

. L. RS
U A et i D




special displacement functions (reference 39, pp. 664-673) when singular stress
behavior needs to be accurately simulated. The sharp, finite peaks predicted by
MARC are not physically real and there is little hope of predicting the actual
stress state in the vicinity of a contact corner unless inelastic deformations
are allowed. At this point, it is clear that a truly realistic finite element
solution (in terms of stresses) for a contact problem with singularities involves
many complicated side issues which were pursued to some extent in the next analysis.

An error in modelling was made but not identified until much later, in that
contact elements were specified at both corner and midside node pairs. This should
have resulted in a computational error since radial displacements at midside nodes
are constrained out of the problem. Despite this, MARC reported compressive forces
at all node pairs. A contact pressure distribution can be computed by dividing
these forces by areas tributary to the node pairs. This can be done for all node
pairs (both corner and midside) individually or by allocating midside node pair
contact forces to corner nodes and using tributary areas that are twice as large
as in the first case. Both options predict roughly the same pressure distribution.
The only significant difference is that the individual node pair option leads to
an edge pressure that is twice as large as the midside node pair allocation option.
The pressure distribution shown in Figure 16 corresponds to the second (allocation)
option. This is believed to be the proper way of interpreting the computed contact
forces under the erroneous modelling conditions. Note that these pressures agree
fairly closely with the radial stresses at integration points just below the surface
(see Figure 12).

In summary, the MARC program proved itself capable of modelling the essential

features of a fairly simple shrinkfit problem, although the predicted stress pat-
terns are of questionable accuracy due to boundary condition errors, Poisson's

ratio effects, and influence of a contact pressure singularity.

Axisymmetric Elastic Sleeve and Elastic Shaft Shrinkfit
Case 2. An elastic sleeve of finite length shrunk onto a long, solid elastic shaft

43 The contact is frictionless and the shrinkfit, as specified, is uni-

is analyzed.
form; however, in reality it is nonuniform because of the elasticity of both members.
The physical situation is shown in Figure 17, and a schematic of the finite element

representation with dimensions appears in Figure 18. The modelling scheme, as far

15
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as boundary conditions, shrinkfit loading, etc. are concerned, is exactly as in
Case 1 except that dimensions are different and the sleeve must be modelled. The
material is taken to be steel (E = 30x10° psi, v =.3).

This problem is a stronger test of contact element performance. The dimensions
chosen correspond to a shrinkfit assembly subjected to fretting tests at DTNSRDC.* ]
This particular assembly was one of a series subjected to cyclic bending tests in

an effort to identify key structural, material, and loading variables leading to

fretting fatigue failure. (The relation of contact analysis to fretting is post-
poned to later discussion; the primary purpose here is to discuss contact modelling
performance.) This geometry does not correspond to any set of proportions con-
sidered by Conway and Farnham43 but the MARC results can be bracketed by two elas-~

]
44 produced

ticity solutions. A more comprehensive mathematical shrinkfit study
results which correspond only to shorter sleeves but are helpful for qualitative

comparison purposes.

el B

The finite element mesh used here is shown in Figure 19. It became apparent in

Case 1 that a mesh convergence study in conjunction with a smoothing/extrapolation

scheme is necessary to get the best attainable estimate of stresses very close to or
at the contact surface, subject to limitations implied by the inherent singularity.
The mesh convergence issue, although important, seemed less worthy of attention

than the stress smoothing question.

It is well known that the finite element procedure based on assumed displace-

ment fields gives continuous and smooth displacement variations but ylelds stresses
that are discontinuous between elements. This mathematical fact of life has been
dealt with through many semi-empirical schemes (nodal averaging, extrapolation)

for finding smoothed stress fields. Rational means of smoothing have, however,
been devised;"s_l'7 one such method is used here. 1In second-order elements (8-node

axisymmetric, 20-node solids) each stress component local to each element, when

integrated exactly, follows a parabolic form. These parabolic forms are, under
some situations, fairly continuous from element to element but tend to become badly

behaved as stress gradients steepen (Figure 20). Use of "reduced integration”

*These tests were conducted by W. Werchniak of the Ship Materials Engineering
Department of DTNSRDC. The results of the tests, herinafter called "DTNSRDC tests,”
have not been published.
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elements (in which variables are integrated inexactly with fewer integration points)
is equivalent to a least—-squares smoothing of the local element stress field.47
The smoothed local stresses follow a linear'variation between integration points,

and smoothed stresses can be found anywhere on an element edge by extrapolation.

A fairly realistic estimate of nodal point stress can then be found after additional
extrapolation concluded by averaging (Figure 21). This method cannot be claimed as
the "best,” but it proved both simple and expedient and produced reasonable results
in this study.

The MARC displacement predictions are compared, in Figures 22-23, to solution343
that bracket the finite element results in terms of nondimensional contact zone
size. Both the radial displacement and the percentage of the specified shrinkfit
prevented by the shaft fall between the elasticity solutions and follow similar
patterns. The nonuniform radial contact surface deflection predicted by MARC corre-
sponds fairly well to the uniform plane strain prediction from the classical Lamé
shrinkfit solution.48 The shaft prevents 85-90 percent of the unrestrained sleeve
shrinkage. The finite element results would fall halfway between the bracketing
curves if the sleeve length-to-thickness parameter b/h corresponded to the b/h
considered by Conway and Farnham. The slightly lower MARC b/h lowers the percentage
shrinkfit restraint somewhat. The shaft restraint is greater at the end of the
sleeve, so this effect is less pronounced there. Note that even though lccal dis-~
placement linearizations are in effect on the contact surface, the nodal displace-
ments could still be faired into the smooth curves of Figures 22-23. The axial
displacements on the shaft surface and inner sleeve bore are shown in Figure 24;

44

this agrees qualitatively with previously cited results. The sleeve bore moves

in opposition to the shaft, the shaft expanding outward and the sleeve contracting
inward.

The reduced integration/extrapolation smoothing method discussed earlier was
used to obtain estimates of radial, hoop, and axial stress on the contact surface.
The results of this effort are shown in Figures 25-27. Radial stress estimates
are computed from integration points in the sleeve as well as integration points

in the shaft. The estimates based on shaft data agree almost perfectly with the

43

plane strain stress predict;icml‘8 and also fall between existing bracketing cases.

The sleeve extrapolation is in lesser agreement because the stress gradients are

much steeper there, and the mesh is not fine enough to model this gradient
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accurately. Two—thirds of the contact zone is essentially in plane strain while
interesting edge effects in the form of "wiggles” are evident (the Appendix contains
a brief discussion of why these wiggles exist). The singular stress at the sleeve
edge is evident. Although the singularity appears much less severe than in the
rigid sleeve/elastic shaft case, the stress peaks at the sleeve edge cannot be
construed as realistic predictions.

The axial stress behavior agrees qualitatively with other results.44 The
sleeve load causes shaft expansion, which is restrained somewhat by the long
shaft beyond the sleeve edge. The resulting compression is counteracted by
sleeve tension and shaft tension outside the contact zone. This effect is highly
local to the edge, however. Finally, the shear stress extrapolated to the con—
tact surface is essentially zero, as it should be for a frictionless contact.

An evaluation of contact element performance is shown in Figure 28. All
contact elements reported a closed condition and bore compressive forces. Since
this 1dealization also had contact elements at constrained midside node pairs, con-
tact pressures were calculated from contact forces by allocating midside node pair
forces to adjacent corner node pairs. As in Case 1, this does not seem to have
seriously affected the results. The extrapolated radial stresses should approach
these calculated contact element pressures in the limit. Figure 28 provides
proof that contact element predictions are in good agreement with extrapolated
stress, except at the edge of the contact zone. Here, contact elements show a
tendency toward a sharp stress peak while extrapolated stresses do not. This 1is
a fault of the solid elements rather than contact elements. The solids do not
have the requisite enhancement for modelling singular stress fields.

In summary, the finite element method of contact modelling through Lagrange
multipliers worked admirably well in two axisymmetric shrinkfit problems. Inter-
element compatibility can be attained by linearizing contact surface displacements.
Although many difficult side issues arise when accurate contact surface stresses are
desired, the problem can be solved i1if enough effort is devoted to mesh convergence

issues, and smoothing and extrapolation of predicted stresses. Calculated stresses

near singularities must be viewed with great caution in such problems.
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EVALUATION OF LAGRANGE MULTIPLIER METHOD
FOR 3-D STATIC FRICTIONLESS CONTACT

The methodology of contact modelling 18 now extended to three dimensions by
reanalysis of the axisymmetric elastic shaft/elastic sleeve problem. The primary
purposes here are to verify the linearization compatibility enforcement method for
higher order 3-D (20-node) elements and to evaluate the effect of a coarser mesh.
The modelling scheme, as far as boundary conditions, loads, and linearizations are
concerned,is much like Case 2. The shrinkfit radial interference is .00l in. at
all contact node pairs, and the material is again assumed to be steel. Reduced
integration elements are again used, and contact suface stresses are obtained by
the same extrapolation method. Two symmetry planes are utilized, as shown in Figure
29, with the X = 0, Y = 0, and Z = 0 planes fixed against X, Y, and Z displacement
respectively. This mesh is very gimilar to that used in an earlier, independent
attempt to analyze the DTNSRDC fretting fatigue test rig with the NASTRAN program.*

The original intent was to study the response of this contact idealization to the

.0005 in. radial shrinkfit and nonsymmetric loads considered in the NASTRAN analy-
sis, but the MARC program appeared to be prohibitively expensive for this. The
NASTRAN work did not consider the frictionless axisymmetric response so the analy-
ses could not be compared, anyway.

The calculated results agree quite closely with those of the axisymmetric
model considered previously. Radial displacements predicted by the axisymmetric
and 3-D idealizations are compared in Figure 30. The linearizations did not cause
any significant circumferential bias; that is, radial displacements at O = 45° are
hardly different from those at 6 = 900- The detaills of edge effect on stresses
and contact element pressures differed because of the coarser mesh near the outer
part of the contact zone. This effect is seen in Figure 31, in which smoothed and
extrapolated nodal averages of radial stress are compared for the axisymmetric and

3-D models. The stress curves shown have been faired through nodal averages based

*The nonlinear effects of contact and frictional slip were treated by succes~
sive linear analyses interrupted by analyst intervention. Contact node pailrs were
first constrained to move together. If contact surface stresses showed that separa-
tion or slip should be occurring, appropriate constraints were released and the
analysis redone until gaps were eliminated and shear stresses were below or close
to the frictional limit. This unpublished work was conducted by E. Schroeder of
the Computation, Mathematics and Logistics Department of DTNSRDC.

o
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on shaft integration point data. Although the stress decay beyond the edge of
the contact zone i{s much slower for the coarser 3~D mesh, the essentials of the
edge effect are captured and plane strain conditions are correctly approached.
Radial stresses based on sleeve extrapolation are different, but it appears that
better agreement could be obtained from sleeve mesh refinement; this is evident
from Figure 32. Since contact elements were erroneously specified once again at
constrained midside node pairs, a special scheme allocating these forces to corner
nodes had to be devised (Figure 33). This adjustment resulted in a reasonable
contact pressure distribution that agreed quite well with the pressure prediction
of the axisymmetric idealization (Figure 34). Not surprisingly, the edge pressures
differed substantially due to the different discretization levels. The mistake of
retaining contact elements at midside nodes was corrected in later analyses.

In summary, the 3-D analysis results agreed with the axisymmetric idealization
results, despite obvious discretization deficiencies. The contact elements per—
formed acceptably well in a 3-D model with higher-order elements when contact

surface displacement linearizations were used.

EVALUATION OF LAGRANGE MULTIPLIER METHOD FOR
STATIC CONTACTS WITH FRICTION AND SLIP

The Lagrange multiplier method of MARC produced only limited success in model-
ling frictional contact behavior. Two attempts worked reasonably well; the axisym-
metric elastic shaft/elastic sleeve shrinkfit with friction included, and a very
coarsely discretized 3-D model of an asymmetrically loaded shrinkfit. MARC failed
to produce convergent solutions to a plane stress contact, friction, and slip prob-
lem and a more elaborate model of the 3-D asymmetric shrinkfit. These four cases '

are discussed in the following section. '

Axisymmetric Elastic Sleeve and Elastic Shaft Shrinkfit

Case 1. The elastic sleeve/elastic shaft model is reanalyzed with a friction
coefficlent of 0.15. The problem {s completely linear because contact surface
shear forces are not large encugh to cause slip. As a consequence, all contact
node pairs remaln in adherence. The only variables affected to any discernible
extent by friction were the contact surface axial displacements, the axial stresses,

and the shear stresses. In Figures 35 and 36, results for the first two variables
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are compared to the frictionless predictions. The relative slip, or difference
between shaft and sleeve movement, is less than in the frictionless case, a physi-
cally reasonable result. Friction also converts axial stress from a localized

edge effect to an effect over almost the entire plane strain zone, a natural conse~-
quence of frictional shear constraint on the contact interface. The smoothed inte-
gration point shear stresses were so drastically discontinuous from element to
element that various efforts to further smooth the integration point data could

not produce consistent results. Apparently, the shear stress gradient in the radial
direction is so steep that only contact element shear forces are numerically signi-
ficant. A frictional shear stress distribution was calculated from contact element
shear forces in the same manner as for normal contact pressures, by reallocating
midside node pairs (Figure 37). Although the trend toward zero shear at the symmetry
plane and a peak at the sleeve edge 1s very rough, Figure 37 looks somewhat like

the fully adhered frictional shear predictions for short sleeve/long shaft shrink-
fits.44 The lesson learned is that symmetry boundary contact node pairs should

be assigned zero friction coefficient to suppress spurious frictional shear. This
correction was made in subsequent analyses. In this case, the frictional shears

are very small compared to contact pressures; thelr ratfo is at most of order

1/100, much less than the specified Coulomb slip limit of 0.15. Interestingly, the

result of Conway and Farnham's%?

plane strain punch/slab frictional contact study
shows that the extent of slip in such a shrinkfit depends only on geometric ratios
and not on material properties. It appears that slip would occur in this problem

if the sleeve were much shorter.

2-D Friction and Slip Problem

Case 2. The previous case was particularly simple since no frictional slip occurred.

In a more thorough test of Lagrange multiplier friction theory, approximate adher-
ence and slip zones for a rigid flat-ended punch indenting a planar elastic slab
are calculated by a combined elasticity/numerical me thod. 49 Conway and Farnham's
calculation showed that the adherence/slip zone size depends only on the Coulomb
friction coefficient and the punch half-width to slab depth ratio. Although the
load in Figure 2 in Conways's work appears as a concentrated force, the unknown
contact surface pressures and shears are determined by assuming a uniform indenta-

tion over the whole contact zone, a condition forced by the rigid punch. The MARC

21




solutions were carried out with a Young's Modulus of 30 x 106, Poisson's ratio
of zero and a uniform contact surface indentation of .0005 in. The infinitely
long slab 1s approximated by a finite slab with stress-free ends that are free
to displace; the affect of a fixed end was found to be negligibly small. The
finite element mesh is shown in Figure 38; eight-node reduced integration plane
stress elements are used with the usual contact surface displacement linearizations.
The Young's Modulus and indentation were varied in some test runs but these vari-
ables had no affect on adherence/slip predictions. The MARC calculations covered
the friction coefficient range .10< u< .60 for both a/h = 1/4 and a/h = 1/2.
The solution strategy was the same as for all previous analyses:

(1) 1Impose shrinkage in increment "zero," assume zero friction, resolve

contact/gapping by iteration, find normal contact forces.

(11) 1Impose friction in increment “one,"” update normal contact forces
retaining same shrinkage or indentation, resolve adherence/slip
conditions, find tangential contact (friction) forces.

(i11) Repeat (ii) until MARC convergence criteria are satisfied.

The MARC results are summarized in Table 1. The only valid results agreeing
with reference 49 were for complete adherence at the largest friction coefficients.
None of the other solutions are valid; MARC either repeated a nonconvergent solution
or ended up in a slowly convergent iteration loop which, for the lowest friction
coefficients, approached a totally invalid result (full adherence where nearly com-
plete slip is the correct answer). Efforts to locate a conceptual error or a
modelling blunder were fruitless. This failed attempt led to further investigations
of the MARC friction capability.

Primitive Model of 3-D Shaft and Sleeve Shrinkfit
with Monotonic Bending

Case 3. The MARC friction capability is now tested in a very coarsely discretized
shaft/sleeve shrinkfit subjected to nonsymmetric bending load. The shrinkfit
assembly 1s the same as that treated in the elastic shaft/elastic sleeve problen
considered earlier. The finite element fidealization is shown, with boundary condi-
tions, in Figure 39. Note that only two symmetry planes can be utilized. The
radial shrinkfit interference i{s .005 in. and the bending load magnitiude is statie-
ally increased from zero to 1000 fn-1b. A friction coefficient u = .15 is specified.

The dimensions and load parameters pertained to a shrinkfit assembly in DTNSRDC




tests that suffered fretting corrosion damage when subjected to a cyclic 1000 in-1d
bending load. This assembly is pictured in Figure 40. (The relation of contact
analysis to the fretting experiments is deferred to a later section. It suffices
to say at this point that adherence/slip predictions are important.)

Nodal forces equivalent to the bending load are calculated in a preliminary
l MARC analysis of the shaft alone. The axial deflections corresponding to a 1000
in-1b moment are calculated from a linear elastic beam equation analysis of
the shaft. A MARC shaft model is fixed at one end with these axial displacements
imposed at the free end. The axial reaction forces reported by MARC at the fixed
end are equivalent to the desired moment. The maximum lateral deflection obtained
is very close to the simple beam theory prediction. The sign of the moment is
immaterial since the shaft is geometrically symmetric about the neutral plane of
bending.

After bending moment nodal forces were identified, MARC solutions of shaft/
sleeve interaction were carried out. A series of MARC analyses intended to find the
load incrementation scheme necessary for convergence showed that nine equal bending
moment increments were needed. Convergence could not be obtained for three or six
increments. The finite element model is so coarse that calculated stresses have
little meaning, but deflections and the frictional behavior of the contact surface
are of interest. MARC predicted a maximum laterial shaft deflection of about .00221
in., which agreed closely with .00224 in. predicted by an approximate stepped beam
deflection formula.50 Deflections in the plane of bending showed that the assembly

bends as a classical thick beam with noticable shear deflection in the sleeve.

The slip and adherence history 1is shown schematically in Figure 41. The
shrinkfit i1s slightly relieved on one side and slightly increased on the diametri-
cally opposed side in the plane of bending, a reasonable result. No gapping occurs
for any load; the bending moment is not great enough to relieve the initial shrink-
fit interference. The ratios of frictional force to normal force and the percentage
of shrinkfit restrained by the shaft which are attained at each contact surface
node pair are summarized in Table 2 for the equilibrated shrinkfit condition and
various levels of bending moment. Frictional slip begins soon after bending load
1s applied, and the zone of slip spreads somewhat with further application of
load. Slip is confined to the upper and lower edges of the contact zone in the
plane of bending. This behavior is not unexpected and the MARC friction theory

seems to have worked well in this particular case.
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Improved Model of 3-D Shaft and Sleeve Shrinkfit
with Monotonic Bending

Case 4. The same modelling techniques used successfully in Case 3 are now applied
to the same shaft/sleeve interaction problem with improved discretization in the
radial and axial directions. The new finite element mesh is shown in Figure 42,
All contact surface displacements are linearized, and contact elements link only
the corner node pairs.

The idealization is well-behaved for zero friction and solution for normal
contact force for the bending moment range 0-1000 in-1b was easily obtained. The
friction analyses failed, however, to approach a reasonable result. All attempts
to find load increments small enough for convergence failed due to slow convergence,
divergence, or, more commonly, “"ping-pong" divergencef These problems arose when
slip initiated at one or more contact surface node pairs. Load increments as
small as 1/216 of maximum load (4.63 in-1b) managed to isolate the slip of one

node pailr at a time but did not eliminate "ping-ponging,” which occurred for steps
of 1/9, 1/18, 1/36 and 1/72 of maximum load as well. Apparently, at initial slip
the first estimates of friction-force to current normal force ratio are so much
greater than the coefficient of friction that convergence is impossible no matter
how small the load increment. In one interesting analysis, for example, one node
pair surpasses the Coulomb limit during a load increment of 4.63 in-1b (1/216 maxi-
mum load). MARC wound up in a "ping-pong” loop with the tangential-to-normal force
ratio changing from .103 to .547 and back to .103, etc., never coming close enough
to the actual limiting value of 0.15.

A thorough check of input by plotting and line-by-line scanning of input data
failed to reveal errors or inconsistencies. Consultation with MARC users and devel-
opers did not reveal any faults in the problem definition. The unsatisfactory
performance of MARC in this case and in the 2-D punch problem prompted consideration
of an alternative computer code for frictional adherence/slip behavior. At this
time, the ABAQUS code became available for in—house use. It appeared to be worth-

while to try the ABAQUS program, which contains a contact and friction capability.

*"Ping~Pong' divergence can occur when an iterative nonlinear equation solution
process fails to home in on a unique equilbrium state at the end of a load increment.
In the particular cases encountered here, the iterations bounced from one totally
different "solution” to another, neither of which fully satisfied force equilibrium
or contact constraints.
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The contact algorithms of ABAQUS make use of the same Lagrange multiplier approach
used successfully in MARC, and the friction agorithms are based on a stiffness

me thod.

VERIFICATION AND EVALUATION OF FRICTIONAL
STIFFNESS METHOD FOR STATIC FRICTIONAL
ADHERENCE AND SLIP PROBLEMS

The ABAQUS program was applied to the 2-D mixed adherence/slip problem that
MARC failed to handle and to the coarsely discretized shaft/sleeve shrinkfit, bend-
ing, and friction problem. It produced satisfactory solutions in both cases, which

are described in the following section.

2-D Friction and Slip Problem

Case 1. The mixed adherence/slip contact problem49 is modelled by ABAQUS in much
the same way as in MARC. Only the a/h = 1/2 case is considered; the mesh is
identical to that seen in Figure 38. The specified indentation, material proper-
ties, and dimensions are the same as used in MARC; the same elements (8-node
reduced integration plane stress) are used along with the same contact surface
displacement linearizations. The one new item of input is the "stiffness in stick”

or "frictional stiffness,” a parameter discussed earlier in the section on stiffness
approaches to contact. This can be interpreted as the ratio of the local contact
surface shear force to the local contact surface tangential displacement. However,
because this parameter is problem dependent, the rationale for its estimation {is

not at first obvious. The friction theory's developer says that the proper stiff-
ness to use is the highest number for which a convergent solution is possible.51

The invalid MARC results for this problem provided ratios of friction force to
tangential contact displacement and, with no other guidance available, sufficed

as a basis for a parametric study. For u = 0.35 these ratios fell within the range
3 x 100 < Kf< 5 x 107 when all contact node pairs are considered. The results

of a successful ABAQUS parametric study based on these numbers is shown in Table

3 for M = 0.35 and Table 4 for 4 = 0.80. The upper limit on frictional stiffness
Kf is very sharply defined by a convergence limit while the lowest stiffness results
in a total adherence condition. Intermediate values produce mixed adherence/slip

solutions. Total adherence is not reasonable for u = 0.35, hence the lower Kf can
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be discarded. For U = 0.80, total adherence appears to be practically the only
possible solution, which 1s somewhat consistent wich previously cited findings.49
Additional mesh refinement and trials are needed to obtain the optimum Ke, but
this is hardly worth the effort. Note that for U = 0.80, the convergence limit is
again sharply defined.

From the above two studies, it appears that Kf = 1.1 x 107 is adequate; further
ABAQUS simulations were carried out with this chosen stiffness parameter for other
friction coefficients. Resulting ratios of contact forces are shown in Table 5, and
the ABAQUS adherence zone predictions are compared to previously cited research49
in Figure 43. Although the results are rather approximate because of discretiza-
tion limitations and the inexactness of K¢, the correct trends are predicted quite
adequately.

The stiffness approach to friction modelling requires a frictional stiffness K¢,
which may be estimated if some guidance 1s already available. The difficulty
in the stiffness method is to determine a physically reasonable Kf in a completely

unique problem. This issue is addressed in the next case.

Primitive Model of 3-D Shaft and Sleeve

Shrinkfit with Monotonic Bending

Case 2. The ABAQUS friction capability 1s now applied to the coarsely discretized
3-D shaft/sleeve problem shown in Figure 39. The mesh, element type, material
properties, and loading (.005 in. unrestrained sleeve shrinkage followed by 1000
in-1b bending load) are the same as before. All contact surface displacements are
restricted to linear variations. The friction coefficient is fixed at u = 0.15,
and frictional stiffness 1s varied in a parametric study to find reasonable Kf
limits for this particular problem.

A preliminary analysis of frictionless axisymmetric contact without bending
produced normal contact forces within 3.5% of the MARC predictions. The ABAQUS
model's maximum lateral displacement was almost identical to the MARC value. Subse-
quent analysis focused on the frictional stiffness 1issue.

The behavior of this system with respect to differing Kf is much more complex
than in the 2-D rigid punch/elastic slab problem. All contact nodes in the punch
problem bear increasing normal forces as the indentation increases. In the 3-D

problem, however, some contact node pairs carry increasing normal force while other
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node pairs are relieved of load as bending proceeds. Friction forces tend to
increase faster than normal forces at points bearing increasing normal load, and
normal forces decrease more slowly than friction forces at points where normal

load 1s shed. As a result, slip occurs at both locations. The friction response
to this nonproportional loading 1s clearly sensitive to frictional stiffness choice
in some unknown way.

A successful MARC solution to the 3-D problem was available as guidance for
the K¢ choice. "Frictlonal stiffnesses” were taken to be the ratio of friction
force to relative tangential displacement from the MARC results for the irictional
shrinkfit with no bending. All such computed "stiffnesses"” fell in the range
1 x 10% < Ke < 5 x 104. A series of ABAQUS analyses for this range of frictional
stiffness at every contact node pair was compared to the MARC results for all
loads up to the maximum bending load. A partial comparison of frictional/normal
force ratios in Table 6 shows that the solutions compare well initially but diverge
as bending load increases. Additional ABAQUS runs at higher K; showed that the
force ratios agreed with MARC results only at higher Kf's, and the Kf's necessary
for good correspondence increased with the bending load. An example for one node
pair is shown in Figure 44. The MARC approach effectively determines the changing
contact surface frictional stiffnesses as load increases; this stiffness apparently
changes over orders of magnitude in a highly nonlinear manner. The ABAQUS approach
enforces a constant input stiffness. If the guess is too low, as in this case,
frictional slip will not be predicted. If the stiffness is too high, slip will
occur at too small a relative displacement. The results shown in Table 6 occurred
because the Initial MARC stiffnesses are too small to predict the slip behavior
that occurs as the assembly is bent.

Several preliminary ABAQUS analyses for order(s) of magnitude variations 1in Kf
were needed over the entire range of loads. The results of a lengthy parametric
study are partially summarized in Figure 45. ABAQUS predicts practically all pos-
sible adherence/slip combinations within the range 1 x 105 < Kf <1x 107. Again,
the lower 1limit is a complete adherence solution. The higher extreme is certainly
a convergence limit, as found in the 2-D punch/slab problem, but this particular
iimit was not determined.

The friction force response of selected contact node pairs for various choices

of frictional stiffness 1s shown, for adherence conditions, in Figure 46 and for
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mixed adherence/slip in Figure 47. The simultaneous loading and unloading of con~
tact node pairs and the effect of slip on subsequent frictional response 18 clearly
seen. The interaction of friction and contact forces is indeed an interesting and
complex phenomenon.

The load versus calculated relative tangential displacement at an adhering con-
tact node pair and a slipped node pair for Ky = 2 x 10° is shown in Figure 48. The
nonlinear response to monotonic load is easily explained 1f the correspondence of
the stiffness friction formulation to the White-Besseling model of plasticity52'53
is recognized. The stiffness theory characterizes the frictlonal response of an
individual contact node pair by two fixed parameters; a "stiffness in stick,” or
frictional stiffness, and a coefficient of friction. The friction coefficient de-
fines a normal force-dependent limit on frictional force at each node pair. The
frictional stiffness is analagous to the elastic modulus and the limiting frictional
force corresponds to the yield stress in the elastic-perfectly plastic model of
metal plasticity. In the White-Besseling concept, a plastic material "element”
exhibiting strain-hardening is characterized by a suitably chosen collection of

elastic-perfectly plastic "subelements.” The gross "element,” composed of many sub—
elements, will exhibit strain—-hardening when subject to monotonically increasing
load. In the ABAQUS friction theory, the contact surface 1s characterized by a
suitably chosen collection of frictional node pairs, each with a force~deformation
law analogous to an elastic-perfectly-plastic White—-Besseling "subelement.” The
nonlinear hardening response seen in Figure 48 is, therefore, not surprising and
can be interpreted to demonstrate a "contained plastic flow" of sorts, the “"flow"
being confined to the contact surface. An interesting, simple contact surface
stiffness model explaining experimentally obsetvedsa dissipative behavior in mono-
tonically and cyclically loaded contacts 1is found in a journal article by Burdekin,
et 31.55 Although the authors utilize nonlinear normal and frictional stiffnesses,
they mistakenly characterize the phenomena as being "elastic.”

The friction theory is complicated by the fact that the Coulomb 1limit depends
on the current normal force. It is clear, however, that the frictional response
at any contact node pair depends on both the normal force and adherence/slip condi-
tions existing elsewhere on the surface. The strong resemblance of this friction

behavior under monotonic loading to contained plastic flow at small strains prompts
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the question of whether ABAQUS can predict dissipative frictional behavior under
fully reversed cyclic loading. This is the focus of further analyses.

The ABAQUS contact/friction model works fairly reliably and i1s capable of pro-
ducing physically reasonable results. The calculations are, however, only as good
as the chosen frictional stiffness. The above parametric study identified a reason-

able K¢ range which can only be justified by engineering judgment although one

simple theory55 implies that K¢ reflects some measure of contact surface asperity

roughness. The lowest K¢ for which one node pair slipped.in the entire range of
loading is 2 x 105, and the lowest Ky for which three node pairs slipped during the
shrinkfit is 6 x 10°. The low stiffness is easily justifiable since it is quite
near the full adherence limit. The high stiffness is more subjective since it is
at least two orders of magnitude less than the limiting Kf for convergence, which
was never determined here. These two limits were used in a subsequent study of

this coarsely discretized system's reponse to cyclic bending loads.

APPLICATION OF FRICTIONAL STIFFNESS METHOD
TO A COMPLEX 3-D FRETTING CORROSION
AND FRETTING FATIGUE PROBLEM

The previously discussed MARC analyses have verified the Lagrange multiplier
method for contact problems, and the ABAQUS analyses have verified the stiffness
approach for friction and slip. These contact analysis capabilities have been
extended to 3-D problems, and the calculation of stresses near contact surfaces has
been proven possible, with some limitations due to stress singularities. The veri-
fied and extended ABAQUS finite element capability is now applied to fretting corro-
sion and fretting fatigue, a complex and difficult class of mechanical engineering
problems.

Fretting corrosion i1s a type of surface damage that results from small periodic
relative motions between metal parts that are held together by clamping pressure.
Such conditions exist in many machine components that are not intended to undergo
relative movement, e.g. bolted or riveted connections, and shrinkfitted shaft/sleeve
assemblies. Fretting corrosion can drastically reduce the fatigue strength of
machine parts. 1If it is severe enough, fretting corrosion leads to surface and/or
near-surface fatigue crack formation, which can ultimately result in crack propaga-

tion into the bulk material and subsequent failure by fracture. Fretting corrosion




damage mechanigms, from a metallurgical and tribological point of view, is fully
discussed by Duquette.56 Both this source®® and Nishioka, et al.?7 include 1ists
of references on fretting corrosion tests made over the past 40 years.

The study of tribological and material influences on fretting fatigue is very
important and constitutes the bulk of related work to date. Experimental evidence
shows, however, that fretting fatigue in machine components also depends on macro-
scoplc factors, some of which can be quantified by continuum (structural) analysis.
The relative slip amplitude at the edge of the contact surface in pressfitted hub/
axle assemblies loaded in periodic (rotating) bending was measured experimentally
and reported upon.57 These experiments showed that the degree of relative slip
depends on geometric characteristics (axle diameter vs. hub diameter, hub overhang
vs. no overhang). Relative slip increased with increasing shear force and nominal
bending stress, implying a dependence on external loads. Relative slip quickly
assumed a steady-state variation which persisted for perhaps 1000 cycles but then
slowly decreased in amplitude as wear processes began. The slip was found to be
independent of the rapidity of cycling and the material's surface hardness. The
relation between nominal bending stress and relative slip took the form of a hys-
teresis loop, indicating the dissipative nature of the friction process. The dis-
sipated eanergy is partly conducted and/or radiated away from the contact surface
as heat. The remaining energy 1s dissipated in plastic deformation and crack forma-
tion local to the contact surface.

The DTNSRDC experiments attempted to define the effects of contact interfer-
ence, sleeve diameter, bending load amplitude, and number of bending cycles on
fretting corrosion damage and fretting fatigue failure in shrunkfit shaft/sleeve
assemblies loaded in rotating bending. Fretting damage, when it occurred, was
localized to the edge of the shaft/sleeve contact zone. Fretting corrosion showed
very little dependence on duration of test or degree of shrinkfit interference.
Although fretting damage tended to increase somewhat for larger-diameter sleeves,
the extent of damage depended more strongly on bending moment amplitude than any
other variable; fretting damage increasing with greater bending moment. The most
highly loaded specimens eventually failed by fracture.

Both the DTNSRDC tests and the study of Nishioka et 31.57 indicate, to varying
degrees, that fretting damage and relative slip are dependent upon geometry and

external loads. These variables can be easily accomodated in a continuum structural
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analysis, particularly a finite element method that handles contact and friction.
Quasistatic analysis 1s appropriate since relative slips appear to be insensitive

to the rapidity of loading, and the extent of fretting damage depends only slightly

a7

on the number of load cycles. The previously observe change of relative slip

with cycles is due to wear effects which cannot yet be modelled by finite elements.
The dependence of fretting on loads and geometry implies that the stresses
on the contact surface are influential variables. This study has shown that finite
element contact analysis methods can be used to determine these stresses. However,
sharp contact zone edges cause mathematical singularities which complicate the
stress field considerably. If the location of contact surface cracking is known
(as it is here) and the degree of initial crack can be characterized, linear elastic
fracture mechanics concepts can be used to determine stress intensity factors.
These factors can, in turn, be correlated to crack growth rate. Such an approach
has been taken in a simple analysis where the stressing is caused by both general
structural loading and by local shearing contact stresses.58 A similar approach
is taken for a cracked sheet subjected to predefined normal and shearing “"fretting

forces."59 In any case a suitable means of stress singularity representation is

required to model the singular stress field due to special corner geometries or
existing cracks. The difficulties with singularities detracts somewhat from the
utility of correlating calculated contact surface stresses to fretting fatigue
failure.

Additional analytical refinements beyond the scope of this study are required
to predict fretting fatigue failure; however, fhe contact analysis method may be
useful in predicting fretting corrosion damage. The finite element method is
capable of predicting both the location and extent of frictional slip in a mono-
tonically loaded static contact. The method should also be capable of predicting
the tangential contact force vs. slip response in cyclic loading. If such dissi-
pative behavior (the referenced hysteresis loops57) can be predicted, then the
energy converted into plastic deformation and heat generation local to the contact
surface can be calculated. The damaging energy is that which cannot be conducted
and/or radiated away as heat. Since experimental evidence shows that the fretting
process is time-independent (not accounting for wear effects on slip amplitude),

a quasistatic analysis seems feasible. Two series of shaft/sleeve analyses under

cyclic bending conditions have been completed. It 18 important to realize that
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cyclic bending is not the same mode of loading as the rotating bending conditions

in the DTNSRDC tests; this fact is clarified in Figure 49. The finite element

L predictions quoted in the following sections do not correspond to the real case
because load is removed from all points simultaneously in cyclic bending. A zero-

loading condition does not exist in the actual experimental mode of rotating bend-

: ing. Rotating bending requires a full three dimensional analysis, however, without

symmetry planes of any kind. This was judged to involve too much sophistication

and expense at this point since the effects of mesh refinement and the validity

of an assumed frictional stiffness with respect to load level were not sufficiently

clear. For these reasons, efforts were confined to the simpler cyclic bending case.

All ABAQUS analyses discussed in the remainder of this report concern steel shrink-

fit assemblies (E = 30 x 106 psi, U = .3) with an assumed friction coefficient

of 0.15.

Primitive Model of 3-D Shaft and Sleeve Shrinkfit with Cyclic Bending

Case 1. The response of the coarsely discretized 3-D shrinkfit model to cyclic

bending is briefly discussed. Although the predictions for a more finely discre-

tized model are more important, these results demonstrate that the choice of fric-

tional stiffness is important in cyclic friction analysis by the ABAQUS program.
The ABAQUS shrinkfit and bending idealizations for frictional stiffnesses

Kf = 2 x 105 and 6 x 109 were subjected to several fully reversed bending load
cycles using the restart features of ABAQUS. The bending load amplitude was 1000
in-1b. A steady-state condition was reached for both stiffnesses after only a
few cycles. The predicted sequence of slip events, normal stress vs. friction
stress, friction stress vs. relative tangential displacement, and relative tangen-
tial displacement vs. bending load are shown, at the most crucial node pairs,
for K¢g = 2 x 10° 1in Figures 50-53. Corresponding predictions for the K¢y = 6 x 107
appear in Figures 54-57.

A fully linear limit cycle is approached for the lower frictional stiffness.
All slip eventually ceases and the assembly shakes down to a fully adhered state
within just two cycles. The contact surface "hardens” very quickly with this
particular combination of variables. The behavior of the higher stiffness system
is fundamentally different in that a steady-state slipping cycle is reached after

an initial transient. The contact surface does not harden sufficiently to prevent
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a steady-state hysteresis loop in which the work done on the system by the bending
is dissipated partially by repeated frictional slipping. The behavior for the
higher stiffness is much more interesting and probably more representative of fre~
ting conditions. The higher K; behavior is more fully investigated in a shrinkfit
model with improved discretization.

Irnroved Model of 3-D Shaft and Sleeve Shrinkfit
with Cyclic Bending
Case 2. ABAQUS analysis of the more finely discretized 3-D shrinkfit model 1in
Figure 43 showed that the major differences in steady-state slip predictions
observed in the coarsely discretized model (fully adhered vs. mixed adherence/slip
1limit cycles) are due more to finite element discretization than to the frictional
stiffness. This point is clarified in Figure 58. This figure shows that the fric-
tional stiffnesses producing steady-state, fully adhered and partially adhered
conditions in the coarse model (2 x 10° and 6 x 105, respectively) do not predict
) fundamentally different slip behaviors when the finite element mesh is made finer
in the radial and axial directions. Clearly then, when the frictional stiffness is
applied to analyze these complex frictional systems, simultaneous mesh convergence
and parametric frictional stiffness studies are needed.

The steady-state mixed adherence/slip conditions depend heavily on the bending
moment, as shown in Figure 59. 1In all cases frictional slip was principally con-
fined to the three percent of contact zone length closest to the sleeve edge;
however, the results for 1000 in-1lb., 666-2/3 in-lb. and 333-1/3 in-1b. maximum
bending moment magnitudes indicate that frictional slip becomes more severe and
widespread as bending moment increases, a result qualitatively in agreement with
the DINSRDC tests. A rough quantitative comparison of theory and experiment in

Table 7 shows that the combination of discretization (36 3-D elements, 15 contact

node pairs), frictional stiffness (Kf = 6 x 105), and frictional coefficient

(uy = 0.15) used in the analyses may have produced pessimistic slip predictions.
This illustrates the not unsurmountable difficulty in predicting complex fric-
tional behavior in mechanical systems by a method that requires knowledge of a
contact surface stiffness measure that only grossly represents many influential

tribological variables.
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Figures 60-62 show the relation of frictional shear stress to normal contact
stress at the two most highly loaded node pairs for the three bending load levels.
The stress behavior at these two points approaches steady-state loops that are
identical to each other but 180 deg out of phase. The loops trace progressively
smaller excursions in the normal force direction as bending load decreases. In all
cases, the steady state i1s quickly reached after a brief transient period. The
decrease 1n cycle duration spent under slip conditions with decrease in bending
load 1is clearly evident.

The predicted relative tangential contact surface displacements vs. frictional
shear stress are shown for 1000 in-1b, 666 2/3 in~1b, and 333 1/3 in-1b moments in
Figures 63-65. The displacement vs. stress behavior at the two most highly loaded
node pairs approaches hysteresis loops that are identical in shape but 180 deg out
of phase. The steady-state loops are quickly approached after brief transients
and enclose a larger "area” as bending moment increases. Not unexpectedly, the
frictional energy dissipation represented by this hysteretic behavior becomes much
more pronounced as bending load increases. The energy dissipated at one node
palr per cycle can be determined easily. The shear stress axis can be converted to
a force axis by a simple multiplicative factor, and the area enclosed by a single
steady-state hysteresis loop can then be calculated. The total energy dissipated
on the contact surface per cycle is found by adding the steady-state hysteresis
loop areas for all slipping node pairs.

A side issue not explored in this analysis is the effect of shrinkfitting stage
analysis method on subsequent response to mechanical loading. All analyses have
treated the shrinkfitting as a purely mechanical loading, while in reality the pro-
cess is both mechanical and thermal. (The sleeve is heated to high temperature and
is slipped onto the shaft while thermally expanded. The sleeve shrinks tightly onto
the shaft as it cools). This thermal process can be simulated with ABAQUS and will
certainly produce initial shrinkfitting and transient cycling response that differs
from that presented here. It is believed, however, that the thermomechanical option
of shrinkfit modelling and the purely mechanical approach used here will produce

similar steady-state frictional behavior.
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APPLICATION OF LAGRANGE MULTIPLIER METHOD TO CONTACT/GAP PROBLEMS

The mixed contact/gap analysis capability of ABAQUS has not been exercised in
this work. It is currently being applied, in a separate project, to analysis of the
interaction of controllable pitch propeller blade components. The ABAQUS results
obtained to date seem reasonable and are computed quite straightforwardly as long
as contact surface linearization constraints are used. The results of these efforts

will be published in a separate DTNSRDC technical memorandum.

POSSIBLE IMPROVEMENTS
IMPROVED CONTACT ELEMENTS
The aforementioned experiences in contact analysis revealed a need for contact
restraints that are mathematically compatible with higher-order finite elements.
Although this difficulty was circumvented here by contact surface displacement

linearizations, such a mathematical artifice detracts from solution accuracy. This

problem can be solved once and for all by “"interface elements” based on assumed
contact pressure and contact surface displacement interpolations that are mathemati-
cally compatible with 2-D and 3-D higher-order solids.

A family of such elements has been derived for use in conjunction with first-

and second-order zsolids.l’0

These interface elements are based on the concept that
the contact surface is a 2-D, geometrically continuous "sheet” of sorts over which
pressures and displacements also vary continuously. The conventional isoparametric
interpolation method (reference 39, Chapter 8) is used in conjunction with trapezoi-
dal integration over the surface in the first—order case and Simpson Rule integration
in the second-order case. In the conventional direct stiffness equation assembly
approach, the interpolated interface elements possess elemental contact force vec-
tors that combine to form the global contact force vector. In contrast, pointwise
contact node pair constraints possess individual contact force components. Unlike
the independent forces of the pointwise contact element approach, the elemental
contact force vectors are inherently compatible with both first- and second-order
solids. Interface element "strains” are defined as the relative displacements
between contact node pairs. These displacements are monitored for contact and gap-

ping. The active node pairs in contact are imposed via the Lagrange multiplier

technique while inactive (gapping) node pairs are determined by iteration.
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In summary, the definition of the global contact force vector is the one major
difference between this new interface approach and the pointwise contact element
method used herein. Additional details on the interpolated interface theory and
results produced in some simple test cases with the ABAQUS code are given in refer-
ence 38. The interpolated interface method performs quite well in simple 2-D and

3-D Hertzian contact test problems.

IMPROVED FRICTION MODELLING

These experiences in friction analysis have shown that the frictional stiff-
ness method is computationally useful and is capable of producing reasonable
results. It Is not always easy to choose a proper frictional stiffness. The
widely varying results produced by different finite element discretizations with
the same frictional stiffness suggest that frictional stiffness is a problem
dependent parameter as much as a material property parameter. In addition, the
relation of this stiffness to tribological conditions is vague and has physical
meaning only in the sense of the resistance of surface asperities in shear. An
effort has been made to identify a promising new approach for metallic friction
based on experimentally definable variables that better reflect the resistance of
contact surfaces to deformation. One such method38 is briefly described in the
following paragraphs.

This new approach to contact iIs called "Critical State Theory™ (CST) which
refers to a mathematical model for soil mechanics from which it borrows some con-
cepts. CST abandons the mathematically convenient Lagrange multiplier artifice for
normal contact in favor of a nonlinear normal pressure-normal strain relation.

This relation produces experimentally observed "hardening” and “softening” behavior
through a pressure~dependent nonlinear stiffness. The gradual approach of contact
surface asperities during loading and the gradual separation of asperities in un-
loading is well represented by the mathematical "hardening” and "softening" behavior.
The stiffness in shear is represented by a conventional shear modulus which utilizes
the nonlinear normal pressure-normal strain relationship instead of the usual elas-
tic modulus. The shear behavior is thus coupled to the normal behavior and reflects
a hardening shear stiffness with increasing normal pressure. This relation repre-
sents, in a gross way, the increasing asperity resistance to shear loading that

occurs with increasing clumping pressure. Since they are valid in the sub-slip




range, where all strains are recoverable, the normal and shear stiffnesses just
discussed are nonlinear but elastic. Both of these stiffness formulations are thus
meaningful in a tribological sense and are explicitly defined in terms of experimen-
tally obtainable variables.

The CST approach for frictional slip strongly resembles classical strain-
hardening flow theories of plasticity. Some features of plasticity theories are
assumed in the definition of slip displacements; namely, strain rate decomposition,
associated flow, normality rule, and the yield surface concept. The hardening rule
is a form of combined isotropic and kinematic hardening in which the size and orien-
tation of the "yield” (in this case, slip) surface depends on the current relative
tangential strain. The slip surface represents a critical intensity of contact
surface shear and normal forces at which slip initiates and continues. The extent
to which the classical Coulomb friction limit (analagous to perfectly plastic flow)
is reached depends on the hardening parameters. The "plastic strain” components,
calculated by conventional normality and associated flow assumptions, represent

nonrecoverable contact surface displacements that occur under slipping conditions.

These “"plastic strains” are, in a sense, tribologically real because slip occurs

11
when contact asperities are grossly (plastically) deformed and forced over one g
another by shear loads. The geometric scale of this predicted frictional plasticity %
is correctly confined to the contact surface. The CST frictional slip formulation §
is also capable of producing the energy dissipation by hysteresis observed in !
cyclically loaded frictional systems. ?

In summary, the CST concept38 defines contact surface behavior in meaningful i
tribological terms rather than relying on mathematical conveniences. This theory
is one step toward a rational description of interface behavior in "constitutive

equation” terms and shows promise as a basis for further generalization toward

EEaraEpepe—

certain kinds of lubricated contacts.

SUMMARY AND CONCLUSIONS
This work has verified, extended, and improved finite element methods for solu-
tion of several classes of dry contact problems in solid mechanics. The class of
problems treated can be categorized as follows:
by (1) Dry contact, no lubrication

5 : (2) Static contact, no dynamic impact effects
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(3) Monotonically and quasi~static cyclically loaded contacts

(4) Elastic material behavior

(5) Small displacements and strains

(6) Frictionless contacts and contacts with Coulomb friction under

both adherence and mixed slip adherence conditions

(7) Full contact (Mixed contact gapping has been treated in a separate

effort)

The contact analysis capabilities of the MARC and ABAQUS programs have been
verified by comparison of elasticity solutions to computed responses of contacts
with and without friction. The Lagrange multiplier method of MARC and ABAQUS han-
dles the normal contact problem quite satisfactorily. The stiffness method is best
suited to the friction problem. Because the ABAQUS program follows these two
approaches, it is recommended as an analytical tool for unlubricated contacts.

The existing ABAQUS capability has been extended to modelling with higher-order
elements and has been applied to problems that must be posed in three dimensions.
The current method of modelling with higher-order elements is somewhat deficient
because of limitations imposed by necessary compatibility restraints. The new con-
tact modelling concept of reference 41 could not be evaluated in this work, but
preliminary tests have shown that it will effectively eliminate contact constraint/
higher~order solid compatibility difficulties.

ABAQUS has been applied to a 3-D contact problem which represents most features
of a fretting corrosion and fretting fatigue test apparatus. The results obtained
for this study demonstrate that the complex contact and friction interaction occurring
under fretting conditions can be modelled mathematically. The contact surface energy
dissipation and the portion of dissipated energy leading to surface damage can be
calculated by finite element methods.

Despite its limitations, this work has verified advanced methods for analyzing
unlubricated mechanical contacts and has extended the analysis capability to a level

that is useful in complex practical problems.
TOPICS FOR FUTURE WORK

This experience has demonstrated that there are many "side issues” peculiar

to certain dry contact problems which can only be resolved after prolonged effort.
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These side issues were not thoroughly treated in this work, but they can be con-
sidered as open topics worthy of further research.

(1) 1If singular points exist in the stress field due to sharp corners or
cracks, computed stresses will not be realistic in the vicinity of the corner or
crack unless the singularity is explicitly modelled. Such stress concentrations
may also cause material nonlinearities in the form of plasticity. All of this will
have some effect on contact surface behavior.

(2) The effect of element size and disposition on the convergence of displace-
ment and stress predictlions toward some "actual” result should always be examined
in finite element treatments of nonlinear problems. This issue could not be fully
treated in the many test and evaluation cases of this study. Although 20-node
solids are monotonically convergent in themselves, convergence of an entire solid
element-contact element system in the presence of singularities (if any), contact
surface constraints (if any), and plasticity (if any) is not guaranteed and should
be checked.

(3) Matters are not simple 1f stresses very near the contact surface are of
interest. Extrapolation of integration point stresses proved useful in this study,
but there is no single foolproof way to interpret the discontinuous stress fields
that naturally occur in displacement—based finite elements. Alternate means of cal-
culating surface stress should be evaluated. One useful alternative may be hybrid
finite elements, which are mathematically constructed to predict continuous stress
fields. Hybrid elements also converge faster than displacement-based elements in
zones adjacent to a singularity.60 Some very recent contact analysis work in this
direction has been accomplished.61

A more fundamental problem involves unlubricated interface modelling. The con-
tact and friction behavior of interfaces has been simulated by necessarily simple
mathematical conveniences (Lagrange multipliers and/or constraint equations), but
such models are somewhat artificial. In many cases, such approximate models can
capture the essentials of contact interface behavior, but this holds true only in
cases where friction stresses are limited by the Coulomb theory. In particular,
although the stiffness approach to friction is computationally successful, a fric-
tional stiffness characteristic that in some way reflects surface roughness is
required. The computed results will depend on the chosen stiffness, and there seems

to be no clear way of correlating this number to actual surface characteristics.
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There is a need for experimentally definable contact surface friction models, ex—
pressed in terms of finite element constitutive equations, that more directly
account for surface roughness. Some possible first steps in this direction have
been discussed.38’62

The finite element method i1s a very powerful analytical tool and offers promise

for treatment of even more complex interface problems in machines and machine com-

ponents. An example of some advanced dry contact work is a finite element simula-
tion of transient thermoelastic contact with wear effects.®3 Lubricated contacts
are another important class of problem; much work has been done in developing
finite element methods to determine pressure distributions and load capacities for
"complex bearings operating in fully lubricated conditions.e’('-68 For highly loaded
bearings or certain bearing pad materials, the bearing pad deformations are as
important an effect as the lubricant behavior. Finite element methods have been
used to calculate pressures, film thickness distributions, and maximum load capaci-

69-71

ties of bearings under elastohydrodynamic conditions. Firally, finite ele-

ments have been applied to lubricated contacts in which thermal effects are

1mportant.72 It appears that well-defined numerical methods exist for analysis

of geometrically complex, fully lubricated contacts for a variety of conditions.

l Although lubricated contacts are very important in naval machinery applications,
such problems require analytical approaches which in no way resemble those con-
sidered herein for dry contact. Finite element treatment of such problems would
require completely new efforts.

Finally, the problem of partially lubricated contacts (boundary lubrication)
is much more complex than dry or fully lubricated cases. None of the dry contact
methods considered here or the lubricated contact approaches listed above are appro-
priate. Application of finite elements to boundary lubrication first requires a :
statement of the problem in fundamental mathematical terms. Such mathematical state-
ments must reflect observed relationships among important variables, which can only
be defined through experimental effort. FEven so, finite elements may not be the

most effective technique for analyzing boundary lubrication problems. i
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Figure 6 - Finite Element Representation of Elastic Shaft/Rigid Sleeve Contact
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Figure 10 - Elastic Shaft/Rigid Sleeve, Radial Shaft Deflection Predictions
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Figure 13 - Elastic Shaft/Rigid Sleeve, Hoop Stresses Near Contact
Surface and in Shaft Interior
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Figure 18 - Finite Element Representation of Elastic Shaft/Elastic Sleeve Contact
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Frictional Slip Development in Plane of Bendingwith Increasing
Bending Load
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Figure 46 - Coarse 3-D Shrinkfit with Friction and Bending, ABAQUS Contact Force
Ratio Predictions in Adherence Regime for Various Frictional Stiffnesses
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Figure 54 - Coarse 3-D Shrinkfit with Friciion and Bending, Cyclic Slip Events
at Crucial Locations for Kf =6 x 10°
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Figure 55b - Response of Node Pair 2 (Fig. 50)

Figure 55 - Coarse 3-D Shrinkfit with Friction and Bending, Cyclic Shear Versus
Normal Stress at Cruclal Locations for Kf = 6 x 10
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Figure 56 - Coarse 3-D Shrinkfit with Friction and Bending Cyclic Frictional Shear
Versus Relative Tangential Displacements at Crucial Locations for
K. = 6 x 10
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Figure 56b ~ Response of Node Pair 2 (Fig. 50)
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Figure 58a - Slip History at Node Pair 1
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Figure 58c - Slip History at Node Pair 3
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Figure 58 - Finely Discretized 3-D Shrinkfit with Friction and Bending,
Comparison of Steady-State Slip Responses for K, = 2 x 10
and 6 x 103 at 1000 Inch-Pound Maximum Bending foad
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Figure 60a - Response of Node Pair 1 (Fig. 58)
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Figure 60b - Response of Node Pair 2 (Fig. 58)

Figure 60 - Fine 3-D Shrinkfit with Friction and BRending, Cyclic Shear Versus
Normal Stress at Crucial Locations, Kf = 6 x 10°, Maximum Bending
Load = 1000 Inch-Pounds
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Figure 62a - Response of Node Pair 1 (Fig. 58)
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Figure 62b ~ Response of Node Pair 2 (Fig. 58)

Figure 62 - Fine 3-D Shrinkfit with Friction and Bending, Cyclic Shear Versus
Normal Stress at Crucial Locations, Kf = 6 x 10°, Maximum Bending
Load = 333 1/3 Inch-Pounds
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Figure 63a - Response of Node Pair 1 (Fig. 58)
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Figure 63b - Response of Node Pair 2 (Fig. 58)

Figure 63 - Fine 3-D Shrinkfit with Friction and Bending, Cyclic Frictional Shear

versus Relative Tangential Displacements at Crucial Locations, Kf -
6 x 105, Maximum Bending Load = 1000 Inch-Pounds
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Figure 64 - Fine 3-D Shrinkfit with Friction and Bending, Cyclic Frictional Shear
versus_Relative Tangential Displacements at Crucial Locations, K¢ =
6 x 10°, Maximum Bending Load = 666 2/3 Inch-Pounds
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Figure 65b ~ Response of Node Pair 2 (Fig. 58)

Figure 65 - Fine 3-D Shrinkfit with Friction and Bending, Cyclic Frictional Shear
Versus Relative Tangential Displacements at Crucial Locations, K¢ =
6 x 10°, Maximum Bending Load = 333 1/3 Inch-Pounds




tdi

W3TQq01d 3I9BIUO) 2A33TS/IJBYS JO TIPON UOTIBPUNOJ OFISBTT UO TTdYS - 99 2InBTg

pa210o3say
£37nuriuo) Juswadeydst(q
YITM woIsLS 3A297S/3FBYS - q99 3andIg

14VHS 40 LHOddNS

uoTITMIOIB(Q

33JeYS SNONUTIU0ISE(

HOIYALNI

HV3IHS ANV 'dOOH

pYYYYi LL bt 2 244 202 2.4 tL 4L

“IVIXV “Iviavy

UITh wa3sdg 2A9918/33BYS - B9Q 2aInB1y

SIN3W313
dVO/LIVINOD

YN \_\/\\ YN IVRIINIVIVE YNV,

r JOVINIYHS JOVHINIHHS
Q3NIVHISIY QINIvHLISIHNN

avNLov TVYNIWON
— . ¥
LNINOW Tr7r777 777772777777
ONV 30HO4
Q31VHINIONOD
A8 Q3HOL1S3y
ALINNILNOD

HIAVT
DVAUNS LAVHS

HIAVT
30v4HNns
1dVHS

\

H3IAVI
30viHNs
IA33TS

HOIHILNI
3A337S 40 LHOJINS
HVY3IHS ANV JOOH

I IvixXv ‘Iviavy

le—  INOZ 1OVINOD —o

~
[=]
—

¢ A

i

W



TABLE 1 - RESULTS OF MARC CALCULATIONS; ATTEMPTS TO SIMULATE
CONWAY'S RIGID PUNCH/ELASTIC SLAB FRICTIONAL CONTACT PROBLEM

Punch Half Width: Slab Depth = 1:4

Approximate %

of Adherence Validity
Friction (from Ref. 49, see MARC Result of MARC
Coefficient Figure 38) Solution
0.60 99 Full Adherence - Converged Valid
0.50 97 Full Adherence - Slow Convergence NV#*
0.40 90 Full Slip - Slow Convergence NV
0.30 78 Full Slip - No Convergence NV
0.20 55 Partial Slip - No Convergence NV
0.10 14 Full Adherence - Slow Convergence NV
Punch Half Width: Slab Depth = 1:2
0.60 99 Full Adherence - Converged Valid
a.55 98 Full Adherence - Converged Valid
0.50 97 Full Adherence - Slow Convergence NV
0.45 94 Full Adherence - Slow Convergence
0.40 90 Full S1lip - Slow Convergence NV
0.35 85 Full Slip - Slow Convergence NV
0.30 78 Full Slip - No Convergence NV
0.25 68 Full Slip - No Convergence NV
0.20 55 Partial Slip ~ No Convergence NV
0.15 33 Partial Slip - No Convergence NV
0.10 14 Full Adherence - Slow Convergence NV
0.05 4 Full Adherence - Slow Convergence NV

*NV = Not Valid




TABLE 2 - RESULTS OF MARC CALCULATIONS; CONTACT SURFACE BEHAVIOR OF 3-D
ELASTIC SHAFT/ELASTIC SLEEVE SHRINKFIT WITH BENDING AND FRICTION

Ratio FT/FN (Tangential Contact Force/Normal Contact Force) Brackets
Indicate Slipping Condition

Node Pair
Number*

Shrinkfit and
Bending

Shrinkfit and
333 1/3 in-1b

Shrinkfit and
666 2/3 in-1b

Shrinkfit and
1000 in-1b

W 00 N O S WwN

0
0.0023
0.0184

0
0.0017
0.0174

0
0.0023
0.0184

0
0.0059
0.1188

0
0.0403
0.0549

0
0.0392

[0.1645]

0
0.0879
[0.1491]
0
0.0455
0.0972
0
0.1192
[0.1480]

0
0.1275
[0.1501]
0
0.0523
0.1433
0
[0.1517]
[0.1500]

e

kfit Restraint (Percentage of Prescribed Shrink
Restrained by Shaft)

fit

W 00~ O BN e

86
85
87
86
85
87
86
85
87

85
89
99
86
85
87
65
60
54

85
94

86
85
87
65
55
40

*Location of Node Pairs.

A

3

:>M

N
%

Section AB
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TABLE 3 - ABAQUS ANALYSES OF RIGID PUNCH/ELASTIC SLAB CONTACT
WITH FRICTION, u = 0.35

Ratio FT/FN (Tangential Contact Force/Normal Contact Force)
Brackets Indicate Slipping Condition
Distance from Frictional Stiffness (Kf)
Center Plane
of Symmetry
(in.) 3x10° | 1x107 [1.1x107 | 1.36x107 | 1.37x107 5x107
0.0 0 0 0 0
0.250 0.017| 0.019 | 0.019 0.019
0.375 0.040| 0.044 | 0.044 0.045
0.500 0.054 | 0.063 | 0.064 0.065 | Noncon- | Noncon-
0.625 0.070| 0.087 { 0.088 0.092 | versent | vergent ;
0.750 0.114{ 0.142 | 0.144 0.150 | Solution | Solution é
0.8125 0.1791 0.226 | 0.231 0.242 f
0.875 0.197 | 0.276 | 0.285 0.311 ]
3
0.9375 0.212 | 0.341 |[0.350] | [0.350] ‘
]
1.0 0.196 {{0.3501)|{0.3501 | [0.350] %
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TABLE 4 - ABAQUS ANALYSES OF RIGID PUNCH/ELASTIC SLAB
CONTACT WITH FRICTION, p = 0.80

T

Ratio FT/FN (Tangential Contact Force/Normal Contact
Force) Brackets Indicate Slipping Condition

Distance From Frictional Stiffness (Kf)
Centerplane of 5
Symmetry (in.) | 1.1x107 | 1.14x107| 1.15x107 | 1.36x10

0.0 0 0

0.250 0.018 0.018

0.375 0.041 0.041

0.500 0.060 0.059 Noncon- Noncon-

0.625 0.083 0.083 | Versent [ vergent

0.750 0.135 0.134 Solution Solution

0.8125 0.214 0.214

0.875 0.262 0.263

0.9375 0.319 0.320

1.0 0.424 0.431

111

PR ap—————

IET—

-

!
H
!:
&
3
i
;
K

D e g LT ey o—

[ e e




TABLE 5 - ABAQUS ANALYSES OF RIGID PUNCH/ELASTIC SLAB
CONTACT WITH FRICTION, FRICTIONAL STIFFNESS = 1.1x10

Ratio Fqy/Fy (Tangential Contact Force/Normal Contact Force)

Brackets Indicate Slipping Condition

gii;g:cglzzzm Friction Coefficient ()
of Symmetry

(in.) 0.10 0.15 0.20 0.35 0.50 0.80
0.0 0 0 0 0 0 0
0.250 0.053 0.036 0.029 0.019 0.018 0.018
0.375 (0.100] 0.132 0.067 0.044 0.041 0.041
0.500 (0.100] 0.128 0.099 0.064 0.060 0.060
0.625 [0.100] [0.150] 0.143 0.088 0.083 0.083
0.750 [0.100] [0.150] [0.200] 0.144 0.135 0.135
0.8125 [0.100] [0.150] [0.200] 0.231 0.214 0.214
0.875 [0.100] [0.150] {0.200] 0.285 0.262 0.262
0.9375 [0.100] [0.150] [0.200] [0.350] 0.319 0.319
1.0 {0.100] [0.150] {0.200] [0.350] 0.424 0.424
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i
TABLE 6 - COMPARISON OF ABAQUS AND MARC ANALYSES OF COARSELY DISCRETIZED i
3-D SHAFT/SLEEVE SHRINKFIT WITH BENDING AND FRICTION .

Ratio FT/FN (Tangential Contact Force/Normal Contact Force)
Axisymmetric Shrinkfit Only
Node Pair Frictiona?nggifness (Kf)
Number* MARC

1x104 2x104 3x10% 4x10% 5x104 3
1 0 0] 0 4] 0 (4] :
2 0.0023 0.0019 0.0038 0.0054 0.0071 0.0087 ‘
3 0.0184 0.0081 0.0161 0.0230 0.0303 0.0372 P
4 0 0 0 0 0 0
5 0.0017 0.0009 0.0019 0.0027 0.0036 0.0044
6 0.0174 0.0040 0.0081 0.0177 0.0156 0.0192 L
7 0 0 0 0 0 0 ]
8 0.0023 0.0019 0.0038 0.0054 0.0071 0.0078
9 0.0184 0.0081 0.0161 0.0230 0.0303 0.0372

Ratio Fp/Fy, Maximum Bending Load 1000 in-1b
Brackets Indicate Slipping Condition
1 0 0 0 0 0 0
2 0.1275 0.0010 0.0021 0.0031 0.0041 0.0051
3 [0.1500] 0.0022 0.0043 0.0063 0.0083 0.0103
4 0 0 0 0 0 0
5 0.0523 0.0009 0.0019 0.0028 0.0036 0.0045
6 0.1433 0.0041 0.0082 0.0121 0.0160 0.0198
7 0 0 0 0 0 0
8 [0.1517] 0.0026 0.0052 0.0076 0.0100 0.0122
9 [0.1500] 0.0157 0.0310 0.0456 0.0597 0.0732
*Location of Node Pairs as Shown in Table 2.
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TABLE 7 -~ FINE 3-D SHRINKFIT WITH FRICTION AND BENDING,
COMPARISON OF EXPERIMENTAL FRETTING DAMAGE EXTENT WITH
CALCULATED SLIP ZONE EXTENT

Extend of Significant
Maximum |Extent of Damage Observed in| S1ip Calculated in
Bending DINSRDC Rotating Bending |. ABAQUS Cyclic Bend-

Moment Experimnt ing Anal}vsis
Average Maximum

(in./1b) (in.) (in.) (in.)

333 1/3 None None At Edge Only

666 2/3 0.007 0.010 0.05

1000 0.009-0.011 0.018 0.05




APPENDIX
EDGE EFFECTS IN CONTACT PROBLEMS
An edge effect, in the form of a wiggly radial stress distribution, appears
in the extrapolated MARC stress predictions for the elastic shaft/elastic sleeve
shrinkfit problem. This same phenomenon was observed in a corresponding elastic—

ity solution.42 The edge effect was found to be more pronounced as the sleeve

thickness become thinner in relation to shaft radius. The thin sleeve is modelled ,

as a thin shell in Hill's work, and the influence of hoop restraint allows the

use of a mathematical analogy to a beam on an elastic foundation (reference 73,

VT NP

pp. 30-33). This analogy gives rise to the edge effect.

This edge effect can be explained even for cases where the sleeve 1is not thin.
If the shaft and sleeve surfaces are imagined as two thin shells, then the radial,
axial and shear stiffnesses of the components' interiors may be imagined as arrays
of attached discrete springs. The hoop restraint of both thick shells can, according
to the analogy, be represented by a continuous elastic foundation. Both shaft and
sleeve are now beams on elastic foundations, and the total effects of all spring
and foundation restraint can be schematically pictured as two arrays of springs
(Figure 70a).

This conceptual assembly of beams on foundations is now subject to the displac-

ement condition that corresponds to the specified shrinkfit interference (the

distance the sleeve would radially contract if unconstrained). This results in a

B ————

physically impossible deformation as shown in Figure 66a. Displacement continuity
can be restored by a concentrated force and moment at the sleeve edge, shown in

Figure 66b. The shear force and bending moment patterns in beam/foundation assem-

g wr B e

blies take on the character of damped waves when acted upon by concentrated forces

g

and moments (reference 73, Page 14). These disturbances gradually die out away
from the loaded point. This fact explains, in part, why the stress distributions
in the 3-D shaft/sleeve assembly are wiggly near the contact zone edge. It is a
natural consequence of the localized forces needed to maintain displacement con-
tinuity at this edge.

' The finite element procedure automatically accounts for such forces so that

o

both continuity and equilibrium are maintained. The predicted displacements reflect
some actual restrained shrinkage compatible with both the local and overall stiff-

nesses of both shaft and sleeve. Interior radial support of shaft and sleeve
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augments the hoop restraint in the fictitious foundation quite directly, but the

effects of axial and shear restraint on the beamon-foundation wiggles are difficult

to assess. The beamon-foundation analogy is not perfect, but it at least provides

a sensible explanation for the predicted wiggly stress distributions.
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